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Abstract. The electronic structure of the arrays of transition-metal quantum dots separated by nonmagnetic
tunnel barriers is considered on the basis of the Anderson localization theory. From the analysis of the grand
canonical potentials, we identify the temperature-dependent interdot superexchange coupling constant.

PACS. 75.50.Tt Fine-particle systems – 05.30.-d Quantum statistical mechanics – 75.50.Bb Fe and its alloys

Quantum dot (QD) arrays allow one to study the in-
teractions, transport processes, and phase features of
a system with widely varying sizes, energy scales, and
electronic densities (cf. [1]). Particular effort is currently
devoted to the investigation of the magnetic proper-
ties of such structures [2–6]. Recent experimental work
on one- and two-dimensional (1D and 2D, respectively)
self-organized (i.e., quasi-periodic) arrays of nanosized
transition-metal dots show magnetic ordering [3–6] of
mostly dipolar type. However, in the case of a 2D sys-
tem of Fe dots on an insulator substrate, a long-range
order has been found [2] that has been attributed to a
contribution of superexchange coupling between the dot
supermoments.

In the work to be reported here, such a superexchange
mechanism in the magnetic ordering of QD arrays is
analyzed theoretically by the employment of the band-
structure-based shell model [7, 8]. Within this model, the
band structure of s and d (or f) electrons is modulated,
because of their confinement in a finite volume. This gives
rise to the well-known gross-shell behavior of the level
density (cf. [9]), which results in the oscillatory size depen-
dence of the supermoments and minority spin holes. Such
a picture reproduces rather well [7] the experimental ob-
servations [10, 11] of oscillating magnetic supermoments
of free individual transition-metal dots as a function of
their size.

If such dots are arranged in an array of sufficiently
dense packing, their coupling modifies the level density;
this can result in various types of magnetic coupling be-
tween the dots [7], similar to the ones for atoms in a lat-
tice. Given that the single-particle level density difference
δ%= %f(ε)−%(ε) between a ferromagnetically arranged and
an uncoupled dot system is known, the temperature- (T -)
dependent superexchange coupling constant J is calcu-
lated as the difference of the respective grand canonical

potentials

J = Ωf−Ωd (1)

≈−(kBT )

∫ ∞
−∞

dε δ%(ε) · ln[1 + exp{(µ− ε)/kBT}] ,

where µ is the electronic chemical potential.
One of the questions that arises with respect to the

coupling-induced change in the level density is related to
the formation of a coherent Bloch state from the dot su-
permoment wave functions in an array. In the Anderson
localization theory (see, for example, [12] and references
therein), such conditions are given by Γ/B < 2 , where B
is the width of the miniband splitting caused by the coup-
ling effects (see (3)), and Γ represents the level broadening
caused, e.g., by the uncertainties in the dot linear sizes δR.
Within the jellium model, applied to a single QD, we esti-
mate Γ ≈ 2εF · δR/R, where εF denotes the Fermi energy
and R is the average radius of the dots. Since the variation
of the linear dot sizes is related to the variation of atom
number N in the d-dimensional dot, δR/R ≈ δN/N , the
condition referring to the coherent states in a QD array be-
comes δN/N < 2B/εF. Having defined this condition, we
will further model the electronic properties.

We assume a simple periodic structure of the QD array
with a period ai in the ith direction (i= 1, ..., D). The va-
lence electron states in this periodic field can be described
by Bloch functions associated with the quasi-energy, εα =
εᾱ+∆ε(k), and quantum numbersα= {ᾱ,k}; the electron
quasi-momentum in D dimensions is k, and the miniband
quantum number ᾱ characterize the energy levels εᾱ in
a single dot. Then the level density change is expressed as

δ%≈

∫ D∏
i=1

d
(kiai

2π

)
[%(ε−∆ε(k))−%(ε)]. (2)
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In an array of dots separated by nonmagnetic tunnel
barriers with heights Ui > µ, the supermoment wave func-
tions are nearly undistorted by the small overlap in the
coupling region. Then the miniband structure can be ap-
proximated by a cosine shape

∆ε(k) =
D∑
i=1

Bi sin2(kiai), Bi = 2ωe Pi , (3)

where ωe is the frequency of electron oscillation within
the dot (i.e., collision with the wall) which is different
for sp, minority (e =↓) and majority (e =↑) spin bands.
As a measure for the overlap integral of the supermo-
ment wave functions of two neighboring dots, the tunneling
probability Pi in the ith direction can be estimated within
the WKB approximation [13] to be

Pi ≈ exp

{
−
√

(Ui− ε)/εib

}
, (4)

where εib = h̄2/2m∗(ξbi)
2, wherem∗ is the effective mass of

an electron in the substrate and bi is the tunneling length.
The parameter ξ depends on the shape of the barrier; for
instance, ξ = 2 is for a square well potential, and ξ = π/2 is
for the inverted harmonic oscillator. One sees that for the
barriers of sufficiently large heights (Ui = U) and widths
(bi = b), only the levels in the vicinity of the Fermi energy
will give a noticeable contribution to the integral in (1).
Therefore, in the case of strong ferromagnets, like the iron
series transition metals Co and Ni, we can neglect the in-
fluence of the filled majority spin band since it is located
below the Fermi energy εF.

Next, the coupling constant for a 2D array is calculated
from (1)–(4),

J ≈ JD ·JB, (5)

with the component JB, related to the barrier properties
and temperature

JB =
4εbα

sin(α)
exp

{
−
√

(U −µ)/εb
}
, (6)

where α = πT/Tα, Tα = 2
√

(U −µ)εb/kB, and the com-
ponent

JD = (µ−U)
[
%′sωs+%′↓ω↓

]
(7)

which is related to the dot electronic structure, with the
level density %s and %↓ of sp and minority-spin bands, re-
spectively. The prime denotes the energy derivative taken
at the Fermi energy.

Equation (5) quantifies the direct superexchange inter-
dot coupling originating from tunneling between the dots.
It can be seen that the coupling constant shows nonoscilla-
tory dependence on the interdot separation distance simi-
lar to the coupling properties of ferromagnets abutted by
a nonmagnetic insulator [14]. The exponential decrease
of the coupling strength (i.e., the factor JB (6)) with in-
creasing separation distance arises from the exponentially

decaying overlap of supermoment wave functions extend-
ing their tails into the barrier. This restricts the interdot
separation at which the exchange can contribute to the
magnetic ordering. This is in agreement with recent experi-
ments (cf. [2], for example); in these studies, no long-range
magnetic ordering was found in a system of self-organized
Fe islands with too low surface coverage. As is seen from
(6), reducing the height of the barrier yields exponentially
larger exchange fields at the same interdot separations.
Therefore, using, e.g., a semiconductor substrate may al-
low one to observe the direct interdot exchange coupling in
an array of less dense packing (due to lower tunnel barri-
ers and a smaller m∗) than on an insulator substrate. For
example, in the case of carbon, the barrier height could
be reduced to about 1 eV (cf. [15]) and the magnetizing
field would be enhanced by the factor ∼ exp{5.7ξb/nm}.
Finally, the quantity JB grows with increasing tempera-
ture. Such a behavior is caused by the exponentially in-
creasing tunnel exchange current for higher energy lev-
els. At finite temperature, the electrons within an energy
range kBT above the Fermi energy εF contribute to the
interdot superexchange coupling at the expense of decreas-
ing occupation of the energy levels below εF. Since the
relative contribution from the levels above εF is larger,
the factor JB increases as a function of temperature. We
note, however, that the factor JD is expected to decrease
with increasing temperature because the shell structure
of the dots is washed out. This may result in a non-
monotonic thermal behavior of the interdot superexchange
coupling [7].

In summary, we have discussed the direct superex-
change coupling in an array of nanosized QD of strong
ferromagnets. Such a coupling can be associated with the
array structures in which the dots are abutted by an insu-
lator or semiconductor. We have seen that the respective
coupling constant decreases exponentially with increasing
interdot separation distance. The superexchange coupling
is expected to react sensitively to the temperature, since
it is determined by the relation between the contributions
coming from tunnel spin current (increasing with tempera-
ture) and the dot structure. Evidently, a variety of possibil-
ities exist for the manipulation of the magnetic properties
of such arrays.
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